
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/371315526

Extending Navigation Service Under Sensor Failures: An Approach by

Integrating System Identification and Vehicle Dynamic Model

Conference Paper · April 2023

DOI: 10.1109/PLANS53410.2023.10140089

CITATIONS

0
READS

47

3 authors:

Some of the authors of this publication are also working on these related projects:

GNSS/INS/LiDAR/HD Map-based Localization View project

shareability network View project

Penggao Yan

The Hong Kong Polytechnic University

6 PUBLICATIONS   92 CITATIONS   

SEE PROFILE

Li-Ta Hsu

The Hong Kong Polytechnic University

205 PUBLICATIONS   3,300 CITATIONS   

SEE PROFILE

Weisong Wen

The Hong Kong Polytechnic University

72 PUBLICATIONS   888 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Penggao Yan on 06 June 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/371315526_Extending_Navigation_Service_Under_Sensor_Failures_An_Approach_by_Integrating_System_Identification_and_Vehicle_Dynamic_Model?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/371315526_Extending_Navigation_Service_Under_Sensor_Failures_An_Approach_by_Integrating_System_Identification_and_Vehicle_Dynamic_Model?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/GNSS-INS-LiDAR-HD-Map-based-Localization?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/shareability-network?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Penggao-Yan?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Penggao-Yan?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_Hong_Kong_Polytechnic_University?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Penggao-Yan?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Li-Ta-Hsu-3?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Li-Ta-Hsu-3?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_Hong_Kong_Polytechnic_University?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Li-Ta-Hsu-3?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weisong-Wen?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weisong-Wen?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_Hong_Kong_Polytechnic_University?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weisong-Wen?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Penggao-Yan?enrichId=rgreq-30b216a8ea8114ba5c7bea28b0a27bc5-XXX&enrichSource=Y292ZXJQYWdlOzM3MTMxNTUyNjtBUzoxMTQzMTI4MTE2NTU2MjM0OEAxNjg2MDQ2OTU4MTk2&el=1_x_10&_esc=publicationCoverPdf


XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Extending Navigation Service under Sensor 
Failures: An Approach by Integrating System 

Identification and Vehicle Dynamic Model 
 

Penggao Yan  
Department of Aeronautical and 

Aviation Engineering  
The Hong Kong Polytechnic University 

Hong Kong, China 
peng-gao.yan@connect.polyu.hk

Li-Ta Hsu*  
Department of Aeronautical and 

Aviation Engineering  
The Hong Kong Polytechnic University 

Hong Kong, China 
lt.hsu@polyu.edu.hk 

 

Weisong Wen 
Department of Aeronautical and 

Aviation Engineering  
The Hong Kong Polytechnic University 

Hong Kong, China 
welson.wen@polyu.edu.hk

Abstract—Localization plays a vital role in various 

autonomous systems, providing essential information for 

perception and planning tasks. However, mainstream 

localization methods are based on the sensors approach, which 

is vulnerable in some extreme conditions where sensors 

probably fail in a short period, such as the camera-based visual 

positioning. This study proposes a sensor-free localization 

method by integrating vehicle dynamic models and an online 

system identification module. First, a system identification 

process is conducted online to identify the system dynamics of 

the powertrain system and the steering system of the 

autonomous vehicle. Then, the identified system responses are 

taken as the control input of the vehicle dynamic model to 

produce the positioning results. The simulated experiments 

show that the proposed method achieves better positioning 

performance than the conventional vehicle dynamic models. In 

addition, the extendibility of the proposed method is explored by 

fusing it with extra sensors based on the extended Kalman filter 

(EKF). Furthermore, the navigation ability of the proposed 

method without sensors is also examined along a trajectory of 

140 meters. The proposed method successfully accomplishes the 

navigation task without any collisions, demonstrating the 

effectiveness in enhancing the security of autonomous systems 

with navigation needs when sensors fail in extreme conditions.  

Keywords—localization, vehicle dynamic model, online system 

identification formatting, autonomous systems, sensor failures 

I. INTRODUCTION 

Localization plays a vital role in various autonomous 
systems, providing essential information for perception and 
planning tasks. Especially in autonomous vehicles (AV), 
localization performance directly affects the generation of 
collision-free trajectories, which ensures the safe navigation 
[1]. Mainstream localization methods in these autonomous 
systems highly rely on accurate information from sensors [2], 
such as light detection and ranging (LiDAR), cameras, inertial 
measurement unit (IMU), and global navigation satellite 
system (GNSS) receivers.  

However, some inevitable limitations of these sensors 
prevent the development of those autonomous systems. For 
example, LiDAR and camera are vulnerable to adverse 
weather conditions such as rain, snowing, and fogging [3], and 
IMU may fail in highly vibrating conditions [4]. 
Consequently, serious accidents might be caused by the 
failure of sensors, such as the crashes of Adam Air 574 mainly 
due to the malfunction of IMU [5]. In short, these sensors are 
sensitive to environmental conditions. Therefore, to release 
the reliance on sensors, it is worthwhile to employ information 

from other environment-independent sources to enhance 
localization performance and fight against sensor failures. 

One possibility is to re-examine the use of vehicle 
dynamic models (VDMs). According to the definition of The 
Society of Automotive Engineers (SAE), VDM is the 
application of physical laws to a vehicle in motion [6]. One 
distinctive strength of VDM is that it is not affected by 
sensors’ conditions. Many researchers have integrated vehicle 
dynamics into the development of localization methods. In 
general, VDMs usually provide a coarse estimation which 
would be corrected by sensors’ measurements [7-8]. For 
example, measurements of vehicle position from exogenous 
sensors will correct the estimation made by VDMs in the 
extended Kalman filter (EKF) [9] based localization process 
[10]. However, such kind of corrections might be impossible 
when sensors fail. In addition, VDMs could not account for 
highly dynamic environments and complicated systems, 
which are common in the real world, making the positioning 
even worse when corrections are unavailable. 

Our previous work reveals that the endogenous feature of 
the system is able to provide corrections to VDM even when 
sensors fail [11], which could be achieved by introducing 
system identification (SI). System identification is a 
technology in the control community, which tackles the 
problem of “building mathematical models of dynamic 
systems based on observed data from the system” [12]. As the 
estimation errors of VDM mainly come from unknown system 
characteristics and changing environments, it is impractical to 
consider all these factors in modeling VDM with specialized 
knowledge, such as the cornering stiffness of tires and the 
bank angle of roads [13]. Nevertheless, the knowledge of 
system identification can be applied to estimate the system 
responses affected by these factors in a data-driven approach 
[12]. Based on the estimated system responses, a better control 
input signal than the raw control command can be provided to 
VDM as a correction. 

In this study, we integrated vehicle dynamic models and 
system identification to extend the navigation service of AVs 
when sensors fail in a short period of time. Firstly, an online 
system identification process is implemented to identify the 
characteristics of the drivetrain system and the steering system 
of the AV. For each identification, control commands from 
planning and control modules are taken as the input signal, 
while the system responses measured by sensors are regarded 
as the measured response. Note that all identification 
processes in this paper are conducted online with well-



functioning sensors, which differ from the previous work that 
implements an offline system identification [11]. Then, during 
the period of sensor failures, the ego-pose of the vehicle is 
estimated by VDM, whose control inputs are computed by the 
identified system dynamics. For convenience, this method is 
named VDM-OnSI. To demonstrate the extendibility of 
VDM-OnSI in mainstream positioning and navigation 
systems, an extended Kalman filter (EKF) [9] is designed by 
integrating the VDM-OnSI and extra sensors noted as EKF-
VDM-OnSI.  

The positioning performance and the navigation ability of 
the proposed method are evaluated in a simulated environment 
created by Gazebo [14], where an AV with full autonomy is 
developed based on autoware [15] for algorithm realization.  
The contribution is as follows:  

1) This paper proposes a localization method based on 
vehicle dynamic models and online system identification to 
extend the navigation service during sensor failures, 
enhancing the security of autonomous systems with 
navigation needs in extreme conditions;  

2) This paper experimentally shows that the proposed 
method can be easily extended with the availability of extra 
sensors to provide improved positioning performance; This 
paper also demonstrates the potential of endogenous 
information in autonomous systems (such as system 
characteristics) to enhance its ability on localization tasks, 
encouraging researchers to explore this direction. 

II. OVERVIEW OF THE PROPOSED INTEGRATION SYSTEM 

The overall architecture of the proposed VDM-OnSI 
method is described in Fig. 1, where the autonomous vehicle 
is taken as the experimental platform. In the autonomous 
vehicle, the localization module receives sensor 
measurements to produce positioning results which are 
employed in the planning and control module to generate 
control commands. The plants execute these commands to 
drive the vehicle to move,  and the sensors measure the vehicle 
pose after the control, which in turn adjusts the control 
commands. The difference between the vehicle pose and the 
desired pose is eventually minimized in such feedback control 
when sensors are available. During this process, an online 
system identification is conducted to identify the time-varying 
dynamics of the plants. The control command (such as 
velocity command) and the measured responses (such as 
velocity responses) are processed recursively to update the 
parameters of the identified model which produces the 
estimated response of control commands. Then a vehicle 
dynamic model (VDM) is deployed to estimate the vehicle 
pose with the control input as the previously estimated system 
responses. Such pose estimation could be used to develop an 
advanced positioning system based on sensor fusion methods, 
such as Kalman filters. When sensors fail, the process depicted 
with the dash line in Fig.1 becomes unavailable. The system 
identification module will use the latest identified parameters 
to estimate the response of control commands. The pose 
estimation given by the VDM-OnSI will be the only source 
adopted in the localization module for vehicle positioning and 
navigation. 

 

 

 

Fig. 1. The architecture of the proposed VDM-OnSI method. 

III. VEHICLE DYNAMIC MODELS BASED LOCALIZATION 

We adopt the notation from the previous work and use the 
two-wheel bicycle kinematic model to describe the planar 
motion of the vehicle [11]. Fig. 2 shows the basic idea of the 
bicycle kinematic model, and the differential equations 
describing the vehicle motion in an inertial frame are listed 
below [13]: 

�� � �����	 
 �� �1�� 

�� � �����	 
 �� �1�� 

	� � ��� sin���       �1�� 

�� � �                     �1�� 

                    � � tan�� � ���� 
 �� tan !�"# �1$� 

where �, � are the coordinates of the center of mass at point 
C, and 	  is the vehicle orientation. Point A and point B 
represent the center of the front wheel and the rear wheel, 
respectively. The line segment AB is the wheelbase of the 
vehicle which is divided into two parts �% and �� by point C. !� is the steering angle of the rear wheel which is assumed to 
be zero, and !�  is the steering angle of the front wheel. 

According to Ackerman turning geometry [13], the line 
perpendicular to the axis of the rear wheel intersects with the 
line perpendicular to the axis of the front wheel at point O, 
which is the instantaneous rolling center. The direction 
perpendicular to line OC is the direction of the vehicle 
velocity �, and the angle made by the velocity direction and 
the wheelbase is the vehicle slip angle �.  In this setting, the 
acceleration along the velocity direction � and the front wheel 
steering angle !� are taken as the control input. 

As can be seen, the bicycle kinematic model can provide 
an estimation of the vehicle state even when sensors are not 
available. However, such an estimation result is not precise 
since certain assumptions made by the bicycle kinematic 
model will not always be satisfied in the real world. In general, 
two main assumptions are made by the bicycle kinematic 
model. Firstly, the vehicle is assumed to be operated at a low 
speed; Secondly, the wheel slip angle, which is the angle made 
by the tire orientation and the wheel velocity direction, is 
assumed to be zero [13]. Although advanced vehicle dynamic 
models can be developed to consider more complicated 
operation conditions, assumptions about the environments and 
simplification of the system’s complexity still exist. 



 

Fig. 2. Two-wheel bicycle kinematic model (The figure is taken from [11]). 

IV. INTEGRATION OF VEHICLE DYNAMIC MODEL AND ONLINE 

SYSTEM IDENTIFICATION 

To provide a correction to the state estimation made by 
VDM, our previous work explores the possibility of 
introducing system identification [11]. System identification 
is the science of “building mathematical models of dynamic 
systems from observed input–output data”[16]. Our previous 
work identifies the system dynamics of the AV in an offline 
way and applies it in estimating the system responses during 
the operation of the vehicle. The estimated responses are 
adopted to synthesize a new kind of control input, which is 
taken as the input of the vehicle dynamic model in (1). Fig. 3 
shows the basic idea of this process. Although the experiment 
in the previous work shows that the positioning performance 
of VDM is improved by adopting the estimated responses 
from system identification, the positioning error still 
significantly increases with time and  eventually becomes too 
large to be used in a navigation task. One dominant reason is 
that the vehicle system is highly dynamic and consistently 
affected by the changing environment, which is hard to be 
captured by the offline system identification.  Considering 
this, this work introduces online system identification to 
model the system dynamics in real time. 

 

Fig. 3. Integration of offline system identification and VDM. 

A. Online System Identification 

In the real world, there is a need to “have a model of the 
system available on-line while the system is in operation” [12], 
especially when the physical properties of the system change 
rapidly. Methods coping with such problem usually refer to 
online system identification, where the model parameters are 
usually updated at regular time intervals by recursively 
processing the measured input-output data. [12].  In general, 
the exact form of online system identification methods 

depends on the types of model structures and parameter 
estimation algorithms. Autoregressive with exogenous inputs 
(ARX) model, Autoregressive moving average model with 
exogenous inputs (ARMAX) model, and autoregressive 
autoregressive with exogenous input (ARARX) model are the 
most common model structures in the online system 
identification. As for the parameter estimation algorithms, 
recursive algorithms including recursive least squares (RLS), 
recursive prediction error methods (RPEM), and recursive 
pseudo-linear regression (RPLR) are widely adopted, which 
can  “compute the new parameters at time k in dependency on 
the parameters at the previous sampling instant k-1 and the 
new incoming information” [17].  

In this study, we simply adopt the ARX model to represent 
the system dynamics, which is given below: 

&�'�ℎ�)� � *�'�+�)� 
 ��)�                    �2�� &�'� � 1 
 ��'�� 
 �-'�- 
 ⋯ 
 �/'�/ �2�� *�'� � ��'�� 
 �-'�- 
 ⋯ 
 �0'�0       �2��  
where +�)�, ��)�, ℎ�)� are the input signal, gaussian white 
noise, and model output at time instant k, respectively, ' is the 
forward shift operator, i.e., '��ℎ�)� � ℎ�) 2 1� , and ��, �-, … , �/ , ��, �-, … , �0  are time-varying parameters, n 
and m are the degree of &�'� and *�'�, respectively. Our 
previous work shows that a system model with 2 poles and 2 
zeros could precisely describe the dynamics of the powertrain 
system and the steering system in an offline way while 
maintaining relatively low complexity for a practical purpose 
[11]. Therefore, instead of conducting a trial-and-error process 
to select the best order of the ARX model, we directly set 4 �� � 2  to put focus on the impacts of online system 
identification on the positioning performance of VDM.  

To estimate parameters of the ARX model in real time, the 
RLS algorithm with exponential forgetting factors is 
employed: 

 56�)� � 56�) 2 1� 
 7�)�$�)� �3�� 
       7�)� � 9�) 2 1�	�)�	:�)�9�) 2 1�	�)� 
 ; �3�� 

   $�)� � ℎ�)� 2 	:�)�56�) 2 1� �3�� 
                           9�)� � 1;  < 2 7�)�	:�)�"9�) 2 1�      �3�� 
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                      2ℎ�) 2 1� … 2 ℎ�) 2 ��>: �3$� 56�)� � ?�6��)�  … �60�)�  �@��)�  …  �@/�)�A: �3B� 

where 	�)�  is the regressor, 56�)�  is the time-varying 
parameter, $�)� is the prediction error, 7�)� is the gain which 
determines how much the current prediction error affects the 
update of the parameter, and 0 D ; D 1  is the forgetting 
factor. Then, the optimal  ARX predictor is given by, 

ℎ6�)|) 2 1� � ��+�) 2 1� 
 ⋯ 
 �0+�) 2 4�                    2 ��ℎ�) 2 1� 2 ⋯ 2 �/ℎ�) 2 �� �4� 

where ℎ6�)|) 2 1� is the optimal prediction at time instant k, 
which can also be interpreted as the identified system response. 

B. Integration of Vehicle Dynamic Model and Online 

System Identification 

Assuming the identified acceleration response is �@ and the 

identified steering angle response of the steering system is !G�, 



the integration of VDM and the online system identification is 

achieved by taking  �@ and !G� as the control input of the VDM 

model in (1), as shown below: 

 �� � �����	 
 �� �5a� 

�� � �����	 
 �� �5�� 

   	� � ��� sin���           �5�� 

�� � �@                       �5�� 

                    � � tan�� � ���� 
 �� tan !G�"# �5$� 

The above modified vehicle dynamic model is denoted as 
VDM-OnSI. Note that VDM-OnSI has the same 
formulation as the VDM-SI in our previous work [11]. The 
main difference is that VDM-OnSI uses online system 
identification to obtain the control input, while VDM-SI 
adopts offline system identification. Section VI will discuss 
their difference in detail. 

V. FUSION WITH EXTRA SENSORS BASED ON EXTENDED 

KALMAN FILTERS 

To demonstrate the extendibility of the proposed method 
in mainstream positioning and navigation systems, we 
integrate the VDM-OnSI with LiDAR based on extended 
Kalman filters (EKF). A loosely-coupled structure is adopted 
where the NDT-matching algorithm[18] is employed to 
estimate the ego-pose of the vehicle based on raw LiDAR 
measurements and the VDM-OnSI is employed to propagate 
the state.  

A. Discretization and Linearization 

The discrete form of VDM-OnSI in (5) is given below: 

�IJ� � �I 
  �I����	I 
 �IJ�� ∗ ∆M �6�� 

�IJ� � �I 
 �I����	I 
 �IJ�� ∗ ∆M �6�� 

	IJ� � 	I 
 �I�� �����IJ�� ∗ ∆M           �6�� 

�IJ� � �I 
 �@IJ� ∗ ∆M                          �6��  
�IJ� � M���� � ���� 
 �� tan !G�,IJ�"# �6$� 

By taking the first-order Taylor expansion at point  �@I , �@I , 	6I, �@I ", (6a-b) can be linearized as below: 

�IJ� � �I 2 ∆M ∗ �@I sin 	6I 
 �IJ�" 	I                   
 ∆M ∗ �@I��� 	6I 
 �IJ�"�I �7��
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�IJ� � �I 
 ∆M ∗ �@I cos 	6I 
 �IJ�" 	I                   
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B. Fusion based on Extended Kalman Filter  

Let RI � =�I , �I , 	I , �I>: be the state of the vehicle, the 
propagation function based on (6) could be written as: 

RIJ� � B RI , �@IJ�, !G�,IJ�" 
 �I �8� 

where �I is the process noise which is assumed to be the zero-
mean Gaussian noise with covariance 9I, and B�∙� is a non-
linear function whose Jacobian matrix is given by: 

UI � VB RI , �@IJ�, !G�,IJ�"VRI W
RXY?Z@X,[@X,\] X, @̂XA_ 
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Let fI  be the estimated pose by the NDT-matching 
algorithm, the measurement function could be written as: 

 fI � gIRI 
 hI �9� 

gI � j1 0 0 00 1 0 00 0 1 0k 

where hI is the measurement noise and is assumed to be the 
zero-mean Gaussian noise with covariance lI.  

The fusion of VDM-OnSI and LiDAR measurement based 
on the extended Kalman filters is given below and noted as 
EKF-VDM-OnSI: 

RmI� � UI��RmI��                      �10��  9I� � UI��9I��UI��: 
 lI�� �10��      nI � 9I�gI:�gI9I�g: 
 oI��� �10�� �@I � �@I� 
 nI�fI 2 gIRmI�� �10�� 9I � �< 2 nIgI�9I�             �10$�  
where RmI� is the prior estimation, �@I is the posterior estimation, 
and nI is the Kalman gain at time instant k. 

VI. NUMERICAL EXPERIMENTS 

The performance of the proposed method is evaluated in a 
simulated environment created by Gazebo [14], where an AV 
with full autonomy is developed based on autoware [15] for 
algorithm realization. Similar to the previous work [11], the 
perception and localization module of AV are developed 
based on the LiDAR measurements, while the planning and 
control module are realized by pure pursuit algorithm [19] and 
the Ackerman turning geometry [13].  

A. Implementation of Online System Identification 

The 3D simulator Gazebo [14] provides the prototype of 
the autonomous vehicle where two plants, including the 
powertrain system and the steering system, are identified. The 
powertrain system converts the power of the engine into the 
movement of the vehicle [20], while the steering system can 
turn the vehicle around the vertical axis while driving [21]. 

 In the powertrain system identification, the velocity 
command is taken as the input signal, and the velocity 
measured by LiDAR is regarded as the output data. The 
identification process is conducted during the vehicle’s 
operation, and the parameters are updated in real time. Fig. 4 
shows the track on which the AV is driving in the simulated 
environment, and Fig. 5a shows the velocity command and the 
angular velocity command produced by the control module of 
AV along the track. The prediction error of the ARX model 
for the powertrain system identification is plotted in Fig. 5b. 
At the beginning of the identification, the prediction error is 
the largest since the vehicle suddenly changes the mode from 



rest to motion and the estimated parameters have not 
converged. With time increasing, the prediction error 
gradually reduces and maintains at a relatively low level. 
Nevertheless, a surge of the prediction error at the endpoint of 
the track is observed, which is also the result of an abrupt 
change of the operation mode from motion to rest. The mean 
prediction error during the whole process is less than 5.97e-04 
m/s, and the standard deviation is around 0.035 m/s. Note that 
the identified velocity response of the powertrain system will 
be converted to the acceleration response by taking the time 
derivative to accommodate the VDM model described in (1). 

 

Fig. 4. The simulated environment in Gazebo. The white dash line is the 
designed track where the AV is driving counterclockwise. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. (a) The velocity command and angular velocity command published 
by the control module of AV along the track; Prediction error of the ARX 
model in identifying (b) the powertrain system; (c) the steering system. 

Similar processes are taken for identifying the steering 
system where the input and output are the angular velocity 

command and the measured angular velocity, respectively. 
Fig. 5c shows the prediction error during the identification 
process which has a similar pattern to that of identifying the 
powertrain system. One difference is that the initial surge of 
the prediction error in identifying the steering system is not at 
the start point of the track but near the first turn, where the 
angular velocity increases rapidly. The mean and standard 
deviation of the prediction error in identifying the steering 
system are 4.35e-05 rad/s and 0.0018 rad/s, respectively. To 
accommodate the VDM model, we convert the estimated 
angular velocity response to the steering angle response 
according to the Ackermann steering geometry [13]. 

B. Positioning Performance with Well-Functioning Sensors 

In this section, we investigate the positioning performance 
of the proposed method along the track, as shown in Fig. 4. 
The vehicle is required to move at a constant speed of 5km/h, 
although the real speed will fluctuate around this value due to 
the impacts of the turning movement. To keep the AV running 
along the track, the LiDAR measurement (standard deviation 
is 0.1m) is adopted in the localization module of the AV to 
produce precise positioning results, which are the basis of 
successfully executing the planning and control modules. The 
proposed VDM-OnSI is implemented in depend of the AV 
system, estimating the ego-pose of the AV. The VDM 
integrated with offline system identification (VDM-SI) 
proposed in the previous work [11] and the pure VDM are also 
constructed for comparison. For clarity, the difference 
between the three methods is listed in Table I. 

TABLE I.  DIFFERENCE BETWEEN THREE POSITIONING METHODS 

Positioning 

Method 

Bicycle 

Kinematic 

Model 

Offline 

System 

Identification 

Online 

System 

Identification 

pure VDM √a -a - 

VDM-SI √ √ - 

VDM-OnSI √ - √ 

a.
  “√” means “adopted”, “-” means “not adopted”. 

Fig. 6 plots the planar trajectory of the estimated pose for 
each method. The black dash line is the trajectory that the 
vehicle actually traced, which is taken as the ground truth. It’s 
clear that the trajectory of the estimated pose by VDM-OnSI 
has the smallest deviation from the ground truth, indicating 
that VDM-OnSI has the best positioning performance among 
the three VDM-based methods. VDM-SI performs overall 
better than pure VDM, but they both suffer large deviations in 
the long-term view, indicating that offline system 
identification is vulnerable in capturing time-varying system 
dynamics. The absolute translation error (ATE) of the three 
methods is listed in Table II. As can be seen, the mean ATE 
of VDM-OnSI decreases by more than 77% compared to that 
of pure VDM, while VDM-SI only achieves around a 13% 
reduction in mean ATE. 

TABLE II.  THE POSITIONING PERFORMANCE 

ATE (m) Max Mean RMSE 

pure VDM 48.69 26.02 30.38 

VDM-SI 38.86 22.66 25.49 

VDM-OnSI 11.16 5.94 6.97 

EKF-VDM-OnSI 3.38 0.57 0.63 

Improved by VDM-SIb 20.19% 12.91% 16.10% 

Improved by VDM-OnSIb 77.08% 77.17% 77.06% 

Improved by EKF-VDM-OnSIb 93.06% 97.81% 97.93% 

b.
 The improvement compared to pure VDM.  



In addition, the positioning performance of the EKF-
VDM-OnSI is also examined. The proposed VDM-OnSI 
model is fused with LiDAR in a loosely-coupled structure 
where the NDT-matching algorithm gives the pose estimation 
based on raw LiDAR measurements. Note that LiDAR used 
in the fusion system has different precision from that used in 
the vehicle navigation. In the EKF-VDM-OnSI system, the 
LiDAR measurement has a standard deviation equal to 2m. 
The trajectory of the estimated pose of EKF-VDM-OnSI is 
plotted in Fig. 6a. Compared to VDM-based methods, EKF-
VDM-OnSI largely boosted the positioning performance. The 
trajectory of the estimated pose by EKF-VDM-OnSI tightly 
fits with the ground truth. The positioning error of EKF-
VDM-OnSI in Table II also suggests the same finding where 
the mean ATE of EKF-VDM-OnSI is around 97% less than 
that of pure VDM. 

 
(a) 

 
(b) 

Fig. 6. Trajectory of the estimated pose when sensors function well by (a) 
VDM-OnSI, EKF-VDM-OnSI, (b) pure VDM, and VDM-SI. 

C. Navigation Performance when Sensors Fail 

In this section, we examine the navigation ability of VDM-
OnSI when sensors fail. The AV is deigned to start at a 
constant speed of 5km/h to move along a pre-designed track, 
denoted as the black dash line in Fig. 7. Before the AV arrives 
at a specific location, the AV has well-functioning sensors to 
provide essential information to the localization module, 
ensuring that the vehicle could precisely trace the track. 

During this period, the identification process of VDM-OnSI is 
executed, and the ARX parameters are continuously updated 
and stored. When the AV arrives at the specific location which 
is marked as the red rectangular in Fig. 7, the AV is 
programmed to be isolated to all sensors, simulating the 
condition that all sensors fail. However, LiDAR sensors can 
be used in a separate program to monitor the real pose of the 
AV. Without sensors’ information, the AV can only utilize the 
pose estimation by VDM-based methods to continue the 
navigation task. Note that VDM-OnSI will stop updating the 
ARX parameters but instead use the latest stored parameters 
for the system response and pose estimation. 

Fig. 7 plots the trajectory of the vehicle in the navigation 
task based on pure VDM, VDM-SI, and VDM-OnSI when 
sensors fail. As can be seen, the vehicle under pure VDM 
based navigation rapidly deviates from the pre-designed track 
and eventually collides with an obstacle. Similar patterns are 
found in the VDM-SI based navigation. However, the VDM-
SI based navigation has a smaller deviation than that of the 
pure VDM based navigation, indicating that even offline 
system identification could boosted the navigation ability of 
VDM. Interestingly, VDM-OnSI based navigation is the only 
one among the three methods that successfully guides the 
vehicle to arrive at the end point without collisions. When 
looking into the statistics, the path from the sensor failure 
location to the end point has a length exceeding 140m, along 
which the mean deviation of VDM-OnSI based navigation is 
only 3.18m in terms of ATE.  

 

Fig. 7. Trajectory of the vehicle in the navigation task based on pure VDM, 
VDM-SI, and VDM-OnSI when sensors fail. 

VII. CONCLUSION 

This study has integrated the online system identification 
and the vehicle dynamic models to provide a sensor-free 
positioning method with considerable positioning accuracy, 
extending the navigation service of autonomous vehicles 
under sensor failures. In system identification, two plants 
including the powertrain and the steering systems of the AV 
are identified when sensors function well.  An ARX model is 
first constructed for each plant to describe the system 
dynamics. Its parameters are then updated by recursively 
processing control commands and measured system responses 
using the RLS algorithm. The identified system dynamics are 
then utilized to compensate the VDM to produce positioning 
results. Along a designed track in the simulated environment 



created by Gazebo, the positioning results show that the 
proposed VDM-OnSI method largely improves the 
positioning performance of VDM with a more than 77% 
reduction in ATE. In addition, the proposed VDM-OnSI is 
integrated with extra sensors based on extended Kalman 
filtering and shows a boosted positioning performance, 
demonstrating the extendibility of VDM-OnSI in mainstream 
sensor fusion based positioning systems. Furthermore, the 
navigation ability of VDM-OnSI when sensors fail is 
examined. Compared to the pure VDM and VDM-SI 
approaches, VDM-OnSI based navigation is the only method 
that accomplishes the navigation task along a 140-meter-long 
path without collisions. As the VDM-OnSI based navigation 
does not rely on any sensors, it could be taken as a safety 
countermeasure to keep the AV normally operated when 
sensors are out of work in a short period of time.  

Nevertheless, there are several limitations to this study. In 
the online system identification, we simply adopt the ARX 
model to represent the system dynamics and set the order of &�'� and *�'� as 2 according to experience. Although the 
identified system dynamics have proven to be useful in the 
integration with VDM for positioning and navigation tasks, 
the optimal model structure and order should be selected based 
on a trial-and-error process. Besides, the model complexity 
should also be taken into consideration since the identification 
process has to be carried out at regular time intervals where 
computation cost matters. On the other hand, in the EKF-
based fusion of VDM-OnSI and LiDAR, VDM-OnSI is taken 
as the process model whose process noise is simply assumed 
to be the Gaussian noise. However, the process noise consists 
of at least two parts: one is the noise of the motion model, and 
another is the control input noise. Since the VDM regards the 
estimated system response as a constant value at each time 
instant, the difference between the estimated system response 
and the real system response is not taken into consideration, 
which means the control input noise is not explicitly modeled 
but rather coupled in the final process noise. This 
simplification makes it hard to determine the reliability of the 
pose estimation results of VDM-OnSI. Future research should 
establish a sensor model for VDM-OnSI where the covariance 
of the estimated system response, as well as the process noise 
of the motion model, could be modeled explicitly. The 
comparison between the sensor model of VDM-OnSI and 
IMU is also worth exploring. 
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